Accurate irrigation volume prediction is crucial for sustainable agriculture. This study enhances precision irrigation by integrating diverse datasets, including historical irrigation records, soil moisture, and climatic factors, collected from a small-scale commercial estate vineyard in southwestern Idaho, the United States of America (USA), over a period of three years (2017–2019). Focusing on long-term irrigation forecasting, addressing a critical gap in sustainable water management, we use machine learning (ML) methods to predict future irrigation needs, with improved accuracy. We designed, developed, and tested a Long Short-Term Memory (LSTM) model, which achieved a Mean Squared Error (MSE) of 0.37, and evaluated its performance against a simpler baseline linear regression (LinReg) model, which yielded a higher MSE of 1.29. We validate the results of the LSTM model using a cross-validation technique, wherein a mean MSE of 0.18 was achieved. The low value of the statistical analysis (p-value = 0.0009) of a paired t-test confirmed that the improvement is significant. This research shows the potential of Artificial Intelligence (AI) to optimize irrigation planning and advance sustainable precision agriculture (PA), by providing a practical tool for long-term forecasting and that supports data-driven decisions.
Stojanova, S., Volk, M., Balkovec, G., Kos, A., & Stojmenova Duh, E. (2025). The Future of Vineyard Irrigation: AI-Driven Insights from IoT Data. Sensors, 25(12), 3658. DOI: https://doi.org/10.3390/s25123658.